− F ( F · R ) / ‖ F ‖ 2 ) in Iteratively Solving the Nonlinear System of Algebraic Equations F ( x ) = 0

نویسندگان

  • Chein-Shan Liu
  • Hong-Hua Dai
  • Satya N. Atluri
چکیده

In this continuation of a series of our earlier papers, we define a hypersurface h(x, t) = 0 in terms of the unknown vector x, and a monotonically increasing function Q(t) of a time-like variable t, to solve a system of nonlinear algebraic equations F(x) = 0. If R is a vector related to ∂h/∂x, we consider the evolution equation ẋ = λ [αR+βP], where P = F−R(F ·R)/‖R‖2 such that P ·R = 0; or ẋ = λ [αF + βP∗], where P∗ = R−F(F ·R)/‖F‖2 such that P∗ ·F = 0. From these evolution equations, we derive Optimal Iterative Algorithms (OIAs) with Optimal Descent Vectors (ODVs), abbreviated as ODV(R) and ODV(F), by deriving optimal values of α and β for fastest convergence. Several numerical examples illustrate that the present algorithms converge very fast. We also provide a solution of the nonlinear Duffing oscillator, by using a harmonic balance method and a post-conditioner, when very high-order harmonics are considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving infinite system of nonlinear integral equations by using ‎F-‎generalized Meir-Keeler condensing operators, measure of noncompactness and modified homotopy perturbation.

In this article to prove existence of solution of infinite system of nonlinear integral equations, we consider the space of solution containing all convergence sequences with a finite limit, as with a suitable norm is a Banach space. By creating a generalization of Meir-Keeler condensing operators which is named as F-generalized Meir-Keeler condensing operators and measure of noncompactness, we...

متن کامل

Numerical Solution of The First-Order Evolution Equations by Radial Basis Function

‎In this work‎, ‎we consider the nonlinear first-order evolution‎ ‎equations‎: ‎$u_t=f(x,t,u,u_x,u_{xx})$ for $0 ‎to initial condition $u(x,0)=g(x)$‎, ‎where $u$ is a function of‎ ‎$x$ and $t$ and $f$ is a known analytic function‎. ‎The purpose of‎ ‎this paper is to introduce the method of RBF to existing method‎ ‎in solving nonlinear first-ord...

متن کامل

Recurrences and explicit formulae for the expansion and connection coefficients in series of the product of two classical discrete orthogonal polynomials

Suppose that for an arbitrary function $f(x,y)$ of two discrete variables, we have the formal expansions. [f(x,y)=sumlimits_{m,n=0}^{infty }a_{m,n},P_{m}(x)P_{n}(y),] $$‎ ‎x^{m}P_{j}(x)=sumlimits_{n=0}^{2m}a_{m,,n}(j)P_{j+m-n}(x)‎,$$ ‎we find the coefficients $b_{i,j}^{(p,q,ell‎ ,‎,r)}$ in the expansion‎ $$‎ ‎x^{ell }y^{r},nabla _{x}^{p}nabla _{y}^{q},f(x,y)=x^{ell‎ ‎}y^{r}f^{(p,q)}(x,y) =sumli...

متن کامل

A computational method for nonlinear mixed Volterra-Fredholm integral equations

In this article the nonlinear mixed Volterra-Fredholm integral equations are investigated by means of the modied three-dimensional block-pulse functions (M3D-BFs). This method converts the nonlinear mixed Volterra-Fredholm integral equations into a nonlinear system of algebraic equations. The illustrative   examples are provided to demonstrate the applicability and simplicity of our   scheme.    

متن کامل

Coupled systems of equations with entire and polynomial functions

We consider the coupled system$F(x,y)=G(x,y)=0$,where$$F(x, y)=bs 0 {m_1}   A_k(y)x^{m_1-k}mbox{ and } G(x, y)=bs 0 {m_2} B_k(y)x^{m_2-k}$$with entire functions $A_k(y), B_k(y)$.We    derive a priory estimates  for the sums of the rootsof the considered system andfor the counting function of  roots.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012